Abstract
Resistance to apoptosis is a recurrent theme in colon cancer. We have shown previously that the 7-transmembrane spanning receptor OX1R for orexins promotes robust apoptosis in the human colon cancer cell line HT29 through an entirely novel mechanism involving phosphorylation of tyrosine-based motifs in OX1R. Here, we investigated the status of OX1R in a large series of human colorectal tumors and hepatic metastases. All primary colorectal tumors regardless of their localization and Duke’s stages and all hepatic metastases tested expressed OX1R mRNA and/or protein. In sharp contrast, adjacent normal colonocytes or hepatocytes as well as control normal tissues were negative. Next, we showed that nine human colon cancer cell lines established from primary tumors or metastases expressed OX1R mRNA and underwent important apoptosis on orexin-A challenge. Most interestingly, orexin-A also promoted robust apoptosis in cells that are resistant to the most commonly used drug in colon cancer chemotherapy, 5-fluorouracil. When human colon cancer cells were xenografted in nude mice, orexin-A administered at day 0 strongly slowed the tumor growth and even reversed the development of established tumors when administered 7 days after cell inoculation. Orexin-A also acts by promoting tumor apoptosis in vivo because caspase-3 is activated in tumors on orexin treatment of nude mice. These findings support that OX1R is an Achilles heel of colon cancers, even after metastasis or chemoresistance. They suggest that OX1R agonists might be novel candidates for colon cancer therapy.