Direct bacterial recognition by innate receptors is crucial for bacterial clearance. Here, we show that the IgA receptor CD89 is a major innate receptor that directly binds bacteria independently of its cognate ligands IgA and c-reactive protein (CRP). This binding is only partially inhibited by serum IgA and induces bacterial phagocytosis by CD11c+ dendritic cells and monocytes and/or macrophages, suggesting a physiological role in innate host defense. Blood phagocytes from common variable immunodeficiency patients bind, internalize, and kill bacteria in a CD89-dependent manner, confirming the IgA independence of this mechanism. In vivo, CD89 transgenic mice are protected in two different models of sepsis: a model of pneumonia and the cecal ligation and puncture (CLP) polymicrobial model of infection. These data identify CD89 as a first-line innate receptor for bacterial clearance before adaptive responses can be mounted. Fc receptors may emerge as a class of innate receptors for various bacteria with pleiotropic roles.